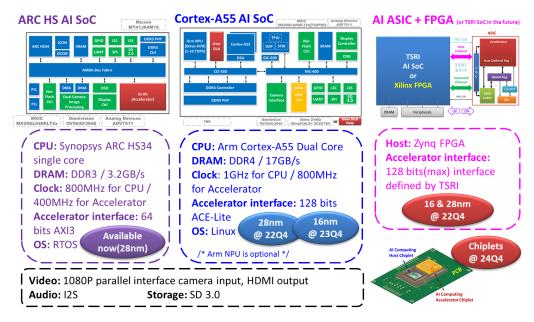
科技部

111 年度「關鍵新興晶片設計研發計畫」說明附件二

人工智慧(AI)晶片設計環境與服務

TSRI 提供下列 AI 晶片設計平台之一站式服務,包括 EDA 軟體/IP 使用服務、軟硬體協同驗證環境使用服務、AI 晶片設計技術諮詢/協同設計服務、AI 晶片製作與封裝服務、展示系統開發諮詢服務。

1. 多計畫 AI SoC 設計平台 (28nm/16nm)


TSRI 提供 2 種多計畫 AI SoC 設計平台,包括(1) ARC HS AI SoC 設計平台 以及(2) Cortex-A55 AI SoC 設計平台,規格及預定服務時程如下圖。學界 團隊使用上述平台設計之 AI SoC 之下線梯次原則上 1 年 1 次,TSRI 會視情況整合多個團隊的電路至同一個 AI SoC 進行下線。平台使用者可能需要 TSRI 協作服務,建議計畫提出前與 TSRI 先行討論。

針對 MCU 等級或非上述平台的 SoC 設計者,TSRI 可提供 IP 使用服務(僅限於 EDA Cloud 上使用且 TSRI 不提供技術諮詢服務)。目前可提供之 IP 包含 Arm Academic Access 資料庫內的項目(註1),Synopsys ARC HS/EM 系列 CPU 以及 EV Vision Processor,Andes RISC-V CPU。

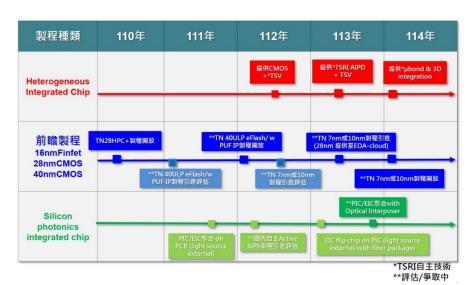
註 1: https://armkeil.blob.core.windows.net/developer/Files/pdf/research/arm-academic-access-data-sheet.pdf

2. AI ASIC 及 FPGA 混合設計平台 (28nm/16nm/Chiplets)

簡化版的 AI SoC 設計平台,主系統(Host)為 Xilinx FPGA, AI 運算經由 TSRI 定義的介面卸載到學界團隊的 AI ASIC。ASIC 內有 PLL, 避免 Clock 受 IO Pad 限制。TSRI 會提供介面規格與電路以及 FPGA 端的軟/韌體以加速學界應用展示系統開發。學界團隊使用此平台設計之 AI ASIC 之下線梯次原則上1年1次, TSRI 會視情況整合多個團隊的電路至同一個 AI ASIC 進行下線。

TSRIAI晶片設計平台規格與預定服務時程

前瞻製程平台服務


TSRI 提供包含數位/類比/RF/混合訊號等電路設計環境與設計套件,並配合本中心晶片實作服務提供 TSMC 16nm FFC、28nm HPC+製程及 TSMC 40G 製程晶片實作服務,亦可配合研究團隊之需求提供獨立梯次 16nm/28nm/40nm/65nm之 Shuttle 給予研究團隊進行晶片製作。在65nm 製程 Shuttle 可額外提供 Flip Chip 選項之自費晶片下線與 DRC 驗證技術諮詢。配合此計畫預計於111 年進行 TSMC 40nm EmbFlash 製程與 PUF IP 的引進評估及環境驗證,預計於112 年開始提供服務。參考111 年上半年 TSMC Shuttle 時程,約每兩個月提供一梯次 TSMC 40nm EmbFlash 製程 Shuttle,引進此製程後將依照經費與團隊需求規劃晶片實作服務之梯次,如下表所示。

前瞻製程常規梯次列表

製程種類	年度常規梯次		
TSMC 16nm FFC	2		
TSMC 28nm HPC+	111 年 2 梯 112 增至 3 梯		
TSMC 40G	4		
TSMC 40ULP (EmbFlash*)	2		
TSMC 65nm	6**		
註:*EmbFlash 仍需配合 TSMC 廠內的時程,**TSMC shuttle 間隔為兩個月			

在 16nm FinFET 製程,TSRI 也將建立 FinFET Layout Dependent Effect 設計流程與進階版之 Dummy Fill 整合程式以加速全晶片之 DRC 驗證流程。同時也將提供 16/28nm 製程在射頻電路模擬所需之 EM 模擬環境,搭配 iPDK 建立與 EM 整合之設計環境。

計畫於 112 年進行 TSMC 10nm/7nm 製程的引進評估,並預計於 114 年開始提供服務。參考 111 年上半年 TSMC Shuttle 時程,111 年上半年有兩梯次之 7nm 製程 Shuttle,引進此製程後將依照經費與團隊需求規劃晶片實作服務之梯次。

前瞻與異質整合晶片製程服務

先進封裝(2.5D/3D)技術服務

目前 TSRI 可提供學術界 2.5D/3D 異質整合晶片技術諮詢服務包含:

- 1. IPD、2.5D 中介層(interposer)和電路板設計諮詢及製作
- 2. 晶片級植金球(gold stud)
- 3. 晶片級覆晶(flip chip)封裝

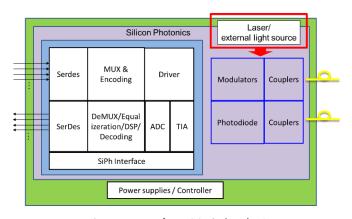
已規劃於 111~114 年進行之項目如下:

- 0.18μm CMOS backside TSV 開發,此技術除了可適用於生醫及影像晶片於
 2.5D 異質整合晶片外,亦可當作感測、讀取、AI、電源管理等晶片之中介層使用
- 2. 評估晶片級 400 接腳 50μm-pitch micro bump 覆晶對接技術的可行性後,開

發此 400 接腳晶片與上述中介層覆晶對接技術

3. 提供學術團隊中介層與電路板(PCB)打線(wire bond)/覆晶對接及晶片與中介層打線/覆晶對接製作技術諮詢

開發及提供服務時程規劃如下:


	111年	112年	113年	114年
IPD	WIPD	WIPD	WIPD	WIPD
CMOS backside TSV		0.18μm CMOS v.1*	0.18μm CMOS v.2**	0.18μm CMOS v.2**
RDL Interposer	1 layer (W/S=20/20μm)	6 layers	6 layers	6 layers
對接ASIC pad數目及 pad pitch (μm)	<20; 100	<40; 100	<40; 50	>400; 50
	CMOS readout Sensor interposer	GelN CMOS Sensor O 18µm CMOS	CIS army sky Semon interposer	GIS Sensor Al CMOS II IIIII

^{*}v.1 TSV 直徑 $40\mu m$,搭配錫球 50um,預計於 111 年底完成開發,112 年開始提供每年兩個梯次製作服務

^{**}v.2 TSV 直徑 $10\mu m$,搭配 Cu pillar 10um,預計於 112 年底完成開發,113 年開始提供每年兩個梯次製作服務


Electronic integrated circuits (EIC)/photonic integrated circuits (PIC) 服務架構與高速傳輸介面量測

針對高速無線晶片、高速傳輸介面、PAM4(4級脈衝幅度調製)調制模式互聯系統實現在 100GE-800GE 傳輸應用提供整合驗證服務平台。平台技術規格將循指標性協會如 100G Lambda MSA 和 IEEE 802.3 在單通道、4通道的 200GE 光電模塊和 8 通道的 400GE 光電模塊等作規畫,實現包含:Electrical transceiver、Electrical receiver、Optical transmit path 技術、收發介面串接技術、Optical receive path 技術等,技術架構如下圖所示。

EIC/PIC 技術實現模塊架構圖

在測試服務方面,遵循各協會標準規格書中訂定規格,提供完整光電測試/驗證環境,如單通道 128GBaud Bit Error Rate(位元誤碼率)測試,依照協會規範的各種測試參數,進行與該晶片支援之資料傳輸率下的指定壓力訊號規格,另外如收發端的光(65GHz)/電(70GHz)眼圖分析,包含 Jitter、Skew、SSC、Rise/Fall Time等訊號測試。發射端與接收端測試驗證服務架構分別如下兩圖所示。

TSRI 提供之發射端測試驗證架構

TSRI提供之接收端測試驗證架構