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Figure 4. Genome characteristics of swimming crab. From outer circle to inner circle: gene distribution,
tandem repeats (TRP), long tandem repeats (LTR), long inter-spersed nuclear elements (LINE) and short
interspersed nuclear elements (SINE), the DNA elements, and the GC content of the genome (Cited from:
Tang et al, 2020).
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Table 1. % B 785 (48 & 5 % 0105 T3 4

Working Deployment Retrieval Soaking Trap Deployment Deployment End
End Latitude
dates Time Time duration (hr) Depth (m) Latitude Longitude Longitude

2024/8/13 2024/8/14 20 23°30.139 N 119°38.872 E 23°30.571 N 119°38.902 E

14-Aug 21
10:00 07:00 20 23°30.034 N 119°38.765 E 23°30.258 N 119°38.793 E
2024/8/14 2024/8/15 19 23°30.424 N 119°38.886 E 23°30.168 N 119°38.901 E

15-Aug 23
08:00 07:00 20 23°30.568 N 119°38.888 E 23°29.807 N 119°38.751 E
2024/8/15 2024/8/16 22 23°29.826 N 119°38.865 E 23°29.847 N 119°38.932 E

16-Aug 23
08:00 07:00 20 23°30.287 N 119°38.785 E 23°29.830 N 119°38.758 E
2024/8/16 2024/8/17 21 23°30.415N 119°38.852 E 23°30.431 N 119°38.861 E

17-Aug 23
08:00 07:00 20 23°30.449 N 119°38.870 E 23°30.467 N 119°38.881 E
2024/8/17 2024/8/18 20 23°29.846 N 119°38.846 E 23°29.855 N 119°38.933 E

18-Aug 23
08:00 07:00 20 23°30.339 N 119°38.971 E 23°30.333 N 119°38.979 E
2024/8/18 2024/8/19 20 23°30.178 N 119°38.830 E 23°29.708 N 119°38.814 E

19-Aug 23
08:00 07:00 21 23°30.401 N 119°39.048 E 23°29.886 N 119°39.012 E
27-Sep 15 21 23°30.229 N 119°39.085 E 23°30.722 N 119°39.116 E
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28-Sep

29-Sep

30-Sep

30-Sep

2024/9/26

15:00

2024/9/27

07:00

2024/9/28

07:00

2024/9/29

07:00

2024/9/30

07:00

2024/9/27

06:00

2024/9/28

06:00

2024/9/29

06:00

2024/9/30

06:00

2024/9/30

15:00

23

23

23

20

22

22

21

14

19

15

12

16

23°30.205 N

23°30.501 N

23°30.491 N

23°31.840 N

23°32.839 N

23°32.234 N

23°32.812 N

23°32.788 N

23°32.805 N

119°38.881 E

119°39.175 E

119°38.977 E

119°39.533 E

119°39.223 E

119°39.685 E

119°39.336 E

119°39.145 E

119°39.410 E

23°30.724 N

23°30.952 N

23°30.972 N

23°32.279 N

23°32.391 N

23°32.041 N

23°32.347 N

23°32.335N

23°32.317N

119°38.904 E

119°39.174 E

119°38.997 E

119°39.496 E

119°39.069 E

119°39.305 E

119°39.215 E

119°39.018 E

119°39.368 E
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(=) LED % kR * @Ry

AFTEL AR REF LT RSONEERPRILE2 % 7 HhEAFHREEIN 2 Ty
FRADI T FRE PSS 75 L4 D ABBE 2023 £ £ B RS FIE mAST 5 26 M
TR 36 A TR 0 RGBS il EF AR AL RN RN T %Y R
MEFEE RS U LR 2 L N (Tuerkayana hirtipes) s L B 7 ¥ % > HiEp
#l2 LED % %- 4% » viiod Ak kR IR EH AL G4 YL ES 4580m -~ % ¢ 526nm -
24 630nm~ v ¢ 460nm - - b PLE Bk SR ST $HER B L R £ B P iU B i
Noldus Ethovision XT /4 3L > 2457 e 3 5 it 2 & £ 258 0 e Bk 4~ 354 o
75 % 2o i7/35 (7 ¥ (Figure 14a) » B g (7/3% (7 F 32 5 23840

R L

WiE K = * 100%
) B 5% B AL L B
BREHRBRICHETBH
g (T K = ? = g 100%
25k A e Bk

%ip;?%@%i&%ﬁé»w&zm2§mmﬁ7@H@w&%%ﬁWﬁﬁwﬁéﬁﬁ
B3 SHBRTOCRARE  RBEBEN A HF R HY T s I—»i%?ﬁT B FER > MR K
FEARERy R P P AR SO AT YRR E R TR - £ 2 A5 (£ 406cm;
% 99cm ; 7 18cm)iE TR EY 3 ek Rk £ T 2 4814 {7 5 F S (Figure 14b ~ Figure 14c) » F 2%
a2 FB A8 A5 5 MPCAM DI #224% - # s3] 58 £ 1080P 30fps e i d i 7 4p ¥
IR AR R e

AL HRERE -~ %PRd kU REKS e kPR E - F wkFEF 30 SR
HEIS0 s b NP REFHE L HFLAEAR G AR R BT HRET T R
Fr R R 2SO FTRGFEE FTHRBT 20 08P FA /B IFTHRLIE A HS
Pl At s 30cm Y BEFEREP I EEFRFR IR LIBE O FERFFELEL
BHRFEF B R EELE UBP BSR4 7280 F20 44818 { #E
{#& 77 - =9 % (Figure 15) -
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Figure 14. (a) LED %k 2% 3 d Fih b)EPFHR2EE OBRPFL7 FXARAE TARLFT R

Ser £ R B4

BERE | ENERET | ENERYE 15 B ] BRI Gist & TEEREST
b 304
A
| & x30m p

LRH EEEL % %308 204 = pguny my LOTE
i Gl i = = 0ia = 205 T
| & x30m N

| & k30m

FHRE

Figure 15. % #1127 5 B B2 F5imAn R4 2 £ LH (B 8o S EL ik gk

Pk smkiT e BEFRHEFFIPTLTR
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RRECL20RNET AERRE-DIBRE  RPFIAABHREAES TG A R B2
2R BB AT B I PN TR BRI R AL LR EF L RS A F P
kR L L ELR L ol A T BL(LED )T b B b AR SR T
EF Y B TIRE TR DRE AT 10 A M ETE a2 v AR Y K R AR TS
HEREFIRE FEMTRLAG  BE KR I R B EL WP PSR EE 7
gl FU S {HBEEeET - 29 s%(Figure 16) -

AEFRiEE A WA 2022 2023 E 6~9 ' AR TR A AR AEFREL PR B
BRER AT 68 S E 142 84972 (B FRLBERTT LR ERHY TR
(Figure 17) > ¥ Tidip v ¢ F 5 P AT 1528 > 2 E 11 28 > £20 0 s #% p & IR
Bl T gl - BRI ERE X FRZ kA wRBEFTR TR
e 5 450nm o BRR G llux o 2 F RS A e A8 je b (R E 2 By o XTI R &
ZEX P B IR R > 0 gy - BRI {EriE ¥ % FLZ gk v (T
P AR E LS 450nm > BR Z lux 0 0 S 1R B e se i rs TR B 2 Bl

5*2M4ﬁ9ﬁogﬂﬁﬂ*é§26ﬁ§ﬂé§%&awgaaﬁywﬁﬁﬁﬁ%%\@

, lErIfLi’g‘ﬁ‘?%; ’ /\-& 5‘“71:3:;}? GF’# %@—53 a8 l?ki 1 %z‘ﬁii- “5%; 5 #p_ﬁ(m, ig\_&#pﬂ i”"_"-”l:
FAAFehr v 2 e AR AR 3K RS 0 RSB PR DA N EET e 1B
B XN F R Ry - BRI ERG LA EH R P RS D RE

A4k (Figure 18) » 4 24 & K TR T gk B2 3p B F F(Table2) - LB & Hedp & & 15 1% i 8
FUPREREE TR R A e 6] 0 2272 & T & Y(Independent Sample t test)
22+ 2 45 7 (Chi-square test) % 2 FF BHHEL B > ¢ EK 5 0.05-

Tiamis | FFHE AT | TR | 1FF TR SErEA | BIBEST

o THRE
B
R4 M E R e A s JE ~ AT BITT @
Rl
e
THx & ~
.
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Figure 16. F A EF S B P2 IR FRHI L5 LB @ B0 FX g 42 -

N

wul BEFRAFHHEPFIRTLTR -

LUNA Digital 5-30X LN-G3-B50-PRO

Figure 18.2024 & T¥ = F 2% P 7= * ‘= ?b 4R A4

Table2. p & * ‘= ?b & R ARLLF & £

LUNA Digital 5-30X LN-G3-B50-PRO
HEHMEERER 5x-30x 6.5%-39x
T AR 2E BE(IR & Z K A& 200m 600m
£ 1 500g 980g
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(2) *FXAHPPERBBE B PR %

TR AR RIREI R RRCER 2 L R e T R RET R S B
Wl R L e TEAEFA RS 5T TR ABG R R A PR A B R
W ERIHT AP A bz ¢ e LED k- fEF L e > F (7 30 A48
@?T?%@”qif&6’iﬁﬁﬁﬁﬁhﬁﬁﬂ“?ii%$ﬁ~%ﬁ%5%&£’ﬁﬂ%
TR E RAPBERRIR N I w2 ) G R 1 1% e B AT R o B
z_ %] i 42 4c (Figure 19):

(1) H % (Fixation)

P 7k % & 3512 Davidson i3 % B 2> I j20e 24 0] PRIS R 718 F AR o

(2) %t -k (Dehydration)

R NN SR RE A S RN 2 R

(3) i# #&(Clearing)

o

ok m S R e g D P R e Pand i R HG LS T R iR O B

—E

(4) 7 ;¥ (Infiltration)

i is e Bl b o 32 g 3~ FEA 2 e BB E M (paraffin)? o I B E - T ¥
F P i TRR T R o

(5) # ¥ (Embedding)

e g Radp b Fohegoc ¢ B Y"ﬁﬂ»kg@?m?éﬁ%i%*§
THOPRFEHEREE > BN R M RRFAR R R HL G E R R R

BHCE o RS v A it > TR R 2T K ‘E'&\‘QFF' BEEWE o, TR

‘%\"P_‘%‘« g B, o

(6)*7 ¥ (Cutting)

%—P_%‘« ¢ KB, F gt S s 8a gr B % (Rotary microtome » Leica RM2235) F » 3% #-H 7 =
8 Sum B2 i B oo SRS S RIEA o AE YR ke AR LB @ SRR A S
HBAEOECASRE LN ke R ETFERL > L RAEHALR 30 -

(7) % ¢ (Staining)

it s B RARE R RS B E A AR E A 2 AR

a2y
¥
IR
2.
P

(8) #+ ¥ (Mounting)
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FRdRgete R PFIAFAL R FAP TR LR T ERT I ks

£
REFEE  RIRE A S FRR - LR P ERT %2 AR (7 (Figure 20) » MELE T chlm 72

AR R TG I B IR e BTG R TR e

5

EX TR
84
.84
. 4
1= 448
84

.84

TR R &

Legend

75 N\
(L) LEDIight
‘ Tied Crab
3

Figure 19. 7 LRt ok 2 08¢ o » F s infe

20 cm

o

e

Davidson ;FIOE H&E ;f_hv#
Solution B S Cex Tl ] 510pm stain | W

EE E 24/)\8% Eﬁ 99.5% 4% 135§ 3= | 3 @ A J[;)J Jinti4 % ?gv{h %:J‘ Fid} \
g 5 N ik @

30518 Xa y

12 {ﬁ% %211‘ o L BhR vaﬁ

: v

Hi 7K

eSS REBI R 2 oo

Figure 20. ok ¢ 2 w5 & B2 i AL
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(m) $+ ¥+ DNA 53~

s 45 RS ujcf 50-100 mg @Rgmep D 15 mL R go F o e » 500 ul A R

/% (400 uL GB buffer (GBB30, Bioman, Taiwan), 80 uL proteinase K (10 mg/uL) (PRK403.500, BioShop,

Canada)) ** 65 & F J& 30 4 48 - 4 » 5 uL RNAase A (10 mg/uL) (RNA888.500, BioShop, Canada)**

37 R F s 15 #4818 0 16,000 g &< 1 4 48 o w2 P~ 300 uL & 2 A7 » 4c » 540 uL AMPure XP

1% e 4 14 338 (A63880, Beckman Coulter, USA)/R £353 3 2 B F R S A S A3 REBIRR L B

R FRIR R 2 vk x4 1 mL 80% JEp (E23, Bioman, Taiwan)ijik 0 3R B EAF 2K 0 = 24
YRIERE £ 0 2 S0 UL & S 2 #T R e -

K+ FEDNAZEFR A
i * 0.8% 2§ 77587 (PB1200, BioShop, Canada) ~ 0.5 & TBE X % (TBE055000, Bioman,

Taiwan) + 110 V % 3 30 4 4515 % % ¢ % @ 9% % 55((DI-01 model, Major Science, USA)# ] P fi 5-
¥ > %5 DNA 2 # R > 4~ B#77 (Figure 21) :

¥

o et Wt bl g vl L e e e :UN»H—!P'-‘M
)

i1

Figure 21 22 = DNA ¢ = &

Table 3 £ 32 & 45 DNA RackID =1 LayOUT ¥ & e 4216 18 e

Sample Layout
RackiD: 2017080701 1 2 3 4 5 6 7 8 9 10 " 12
WWW2600B | WWW2680B| WWW2660B
WWW2610B | WWW2690B| WWW2670B
WWW26208 | WWW26008| WWW2680B
WWW2630B |WWW2610B| WWW2690B
WWW2640B |WWW2620B
WWW26508 |WWW2630B
WWW26608 | WWW26408
WWW2670B |WWW26508

I(@|(Mm|O0|m| =

|DNA2D Tube Layout
I 1 2 3 4 5 3] 7 8 9 10 " 12
1134380351 | 1134381049 | 1134381071
1134381023 | 1134381048 | 1134381092
1134381311 | 1134381047 | 1134381093
1134384191 | 1134381068 | 1134381094
1134385343 | 1134381069
1134381044 | 1134381070
1134381045 | 1134381073
1134381046 | 1134381072

20
A
B
c
D
E
F
G
H
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Table 4 #-#z %8 F 31 ~ DNA 55 4 7.5 % ~ DNA *c ¥ B F 12 = Excel 14

Barcode WmEAE | MF | Zh |HREZE| SWED ‘ DNARackiD | DNA 2D Barcorde Tube ID | Position | Conc. | Unit | Volumn (uL)| Yield(ug) | A260 | A280 |260/280|260/230 | Sample Type| Factor
WWW2600B | Sample0001 F A B Hair202-A 2017080701 1134380351 A0 89.6 | nglul 40 3.584 2241|1091 | 205 0.63 RNA 40
WWW2610B | Sample0002 M A R8I Hair202-A 2017080701 1134381023 BO1 80.1 | nglul 40 3.204 2003 | 0989 | 202 0.56 RNA 40
WWW2620B | Sample0003 F A in# | Hair202-A 2017080701 1134381311 co1 90.7 | gl 40 3.628 | 2.266 | 1.115 | 2.03 0.61 RNA 40
WWW2630B | Sample0004 F B %3 Hair202-A 2017080701 1134384191 DOo1 702 | nglul 40 2.808 1756 | 0839 | 2.04 051 RNA 40
WWW2640B | Sample0005 | M B &% | Hair202-A 2017080701 1134385343 E0L 99.4 | ngll 40 3.976 | 2485 | 122 2.04 [ 0.57 RNA 40
WWW2650B | Sample0006 M A Fon Hair202-A 2017080701 1134381044 F01 90.9 | nglul 40 3.636 2272 | 1152 1.97 0.55 RNA 40
WWW2660B | Sample0007 i) 9 .53 Hair202-A 2017080701 1134381045 GO1 729 | nglul 40 2.916 1822 | 0881 | 207 05 RNA 40
WWW2670B | Sample0008 F & i Hair202-A 2017080701 1134381046 HO1 964 | nglul 40 3.856 2409 | 1175 | 2.05 06 RNA 40
WWW2680B | Sample0009 M A B Hair202-A 2017080701 1134381049 AD2 954 | ngll 40 3.816 2385 | 1164 | 205 0.53 RNA 40
WWW2690B | Sample0010 | M B sn | Hair202-A 2017080701 1134381048 B02 85.9 | nghl 40 3436 | 2.148 | 1.043 | 2.06 | 055 RNA 40

B @R L EAFIUFT

A0 0 {8 4 #-r1 Tllumina Novaseq #3387 /A « T ha A P EFTH g = i FastQC 4 47 »

# f 7 FehE B P g T @ % Picard-tools #3z PCR i & *x ~ ¥ £ » £ 12 Burrows-Wheeler Aligner
HHF 5y A7 F H{r GATK 45 1198 8 o AT £ 7 AR LDt bt
PRORF A ST > ML A P EDEARD P T R K> AT 24 T 4 (Reference
genome) ° i%iE GBS H AT/ * FbrB 3 > 7 i T R A AT i TR H A F S A
T Flm el AR AT

(a) DNA i it

P~ DNA # &(500 ng, #84 % 10 ul)2? Apekl (New England Biolabs)*U#|f% 4 R & » 44
20ul # 37°CT i®%* i 1 /] pF o

(b) Adapter # &

22

% - B Adpater ¢ B #] L ¥ 3 T ] pF % > = &  barcode ¢ 5'-
ACACTCTTTCCCTACACGACGCTCTTCCGATCTxxxx fe 5'-GAATTCyyyyA
GATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT » # ¢ “xxxx”fr“yyyy”4# %] % 7+ barcode i
w BG83 R P o % - B Adapter ¥ F - B 2 EcoRI f % e &k =5 @ 5-
GAATTCAGATCGGAAGAGCGGTTCAGC AGGAATGCCGAG fe 5'-
CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT - #-i# %] adapter 4r . TE (50 uM)*® ;& & 4%
AR EY 3L (95°C2 245 1 0.1°C/s T rET] 25°C 0 30 A 4R RAE 4°C)7) = IR
Adapter o #-j" it = DNA P~ 5ul ~ % 7 barcode 7 Adapter ~ 1x buffer {= T4 i# 4% i (New England
Biolabs);® & » 447 30 ul & 16°CT (% 2 | p&(Fig. 13) «
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ApeKisite  ApeKisite ApeKi site

Genognic DNA
N\
Step 1
. D th ApeKI
Construct reduced representation libraries (RRLS)  sticky end o A Sticky end
by digesting each DNA sample with a \ «
restriction enzyme (ApeKI)
ApeKi sticky end ApeKi sticky end
Step 2
Ligate custom ‘barcoded’ adaptors to sticky T 1
ends of restriction site. Each sample has its own Forward DNA sequence Reverse
unique barcode sequence adaptor adaptor

Unique DNA barcode
for each sample

Step 3
Pool digested and barcoded DNA - ﬂ ‘
into a single tube. Perform PCR amplification,

library preparation, and sequencing
on lllumina platform Digested and barcoded Pool pcn ||| uuuuu

DNA samples DNA amplify ~ sequenciny
Ap kl —_—
Barcode 1 DNA sequence f—
Step 4 Y LA ———
Use barcodes to assign sequences to samples. —> | S—
Produce a file of DNA sequence data
for each sample ~
TRENDS in Genetics

Figure 22. GBS s 322~ B2 45 F & in42 (B * 31 *  https://scienceon kisti.re kr)

(c) Afr3nit 2 ;ﬁiiﬂ

ME QB E- KRR L & L P 5ul R & 12 PCR Purification Kit (Qiagen » Valencia » CA)i& {7
ik B ¥ w s 30ul 84F o B it 4 e DNA 2 ul ~ 1x Tag Master Mix (New England Biolabs) ~
25 pmol 351 37

(A)

5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

(B)

5-
AAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT
SWAAE 5 S0ul» PCREE™ 5 72°C5 A48~ 98°C 30 ) » 4% 18 77k 98°C 30 4) ~ 65°C 30
52 72°C30 45 Befs 72°C w0 HF 5 4o RSB AFT ¥+ lllumina i#] A T 4 e 7 2
B o

R+ P vl EAFIREA

B 3 5 * AMPure XP (Beckman Coulte) & i% 150-400 bp 2. [ e 7 £ > & 3E 2 15 <9 DNA

T R TaE A2 AT A TA T £ 5 Novaseq6000-2x150 bp (Illumina)iE {7 § i & &
A NFTHE N 300 & BEF K 600Gb T A F AL o d 3t GBS :}iﬁhr;ﬁd L FEr 2 1
FIFE T A eae g RS BB E AR A TR i SR 0 R RN BAR T RE ik
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AR DR oYM ASEE DR AT A A F1A 3] 5 (Genotyping rate) £ & 20~32% (&

A FE 68~80%) bt AR R 2 GEFEEL > Pighat 4 F<B0% > B ATFIE -

WR>1% 5 4 & PR IE s B0 A 47 5 0 M B 4 (BT T 50%  dho] 2k T E R >5%

s BE B R ANEE o R A TR A F>00%2 A ML E S BRI AL IR o
ot U < R

() 4241

~

AFFE B CATIEA TR 50 TR B mapping rate 2 {5 A 47l M 0 F
412 {7 FASTQ read adapters 3 *% % Jg's & J7 # 4 77 read base » & #& * FastQC R& &+ - i
FASTQ 1 » 5B % T3 A 47 16 § ih'F &2 7Hul N g Ak 2 read & 5 Q20 11 chig 4 o
#3 B & Fread 2 {5 0 & * Burrows-Wheeler Aligner(BWA » v0.7.15)#-read £ 4 + {1143
AT e b RaEfeY o d W PCR A e g R T L AFIRFEE R ALz 2k
diread Bt HepEiE € HIIAFIM Y ol - By > gkt dhiread A ITLRER

e TTE Py 0 %ﬁd Picard-tools k{&izizdt read  QC 8 B AP KFE I H AT E2 FTE 84
» @ 45 1 Q30% 0 TRIFR RN EE B QC R SRk AR VUV HR T B
S BdE R T LR AT/ ik E

(b) % 2 1& % (Variant calling)

HEFP R TR EINT NI E iR 1 B oY RN ARF Y B 5 H ik BWA
» Broad Institute & P% % 9 GATK % Picard % £ #-2 VCF # ;% $i5 11 (Figure 23) » % % fdsf ¢
3= SNP ~ & » 4% 4 #3z(Indel) 2 & Jfﬁ ' 8 (Structure variant) s> BL AL > N F ek i BEAT AR S
B~ AR R ?}\"’ Rolagrrii=® ~ A4 R 5']%&?‘““%%%& SRR T R E
itz H Wiz s » AR AT %—ﬁ # GATK Best Practices - Germline short variant
discovery (SNPs + Indels > Figure 24) -

##fileformat=VCFv4.1

##£1ileDate=20090805

##source=mylmputationPFrogramVi.1
##reference=file:///seq/Teferences/1000CenomesPilot-NCEI36. fasta
##contig=<ID=20,length=62435964,assenbly=B36 ,md5=f126cdf TE3TdE18EE 2da,species="Homo sapiens",taxonomy=x>
##phasing=partial

##INFO=<ID=NS,Number=1,Type=Integer ,Description="Number of Samples With Data">
##INFO=<ID=DP,Number=1,Type=Integer ,Description="Total Depth">

##INFO=<ID=AF ,Number=A,Type=Float ,Description="Allele Frequency">
##INFO=<ID=AA,Number=1,Type=5tring,Description="Ancestral Allele">
##INFO=<ID=DB, Number=0,Type=Flag,Description="dbSNF membership, build 123">
##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2? membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=550,Description="Lesz than 50% of samples have data">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">

##FORMAT=<ID=C{, Number=1, Type=Integer ,Description="Cenotype Quality">
##FORMAT=<ID=DF ,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HI, Number=2,Type=Integer ,Descripticn="Haplotype Quality">

#CHROM FOS o REF ALT QUAL FILTER INFO FORMAT NADDDO1 NADODDOZ NADDOO3
20 14370  rs6054257 G A 29 PASS  NS=3;DP=14;AF=0.5;DB;H2 GT:GO:DF:H] 010:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
20 17330 . T A 3 qlo N5=3;DP=11;AF=0.017 GT:GQ:DF:HO 010:49:3:58,50 0]1:3:5:65,3  0/0:41:3
20 1110696 rs6040355 A G,T 67 PASS  NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DF:HQ 1]|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4
20 1230237 . T . 47  PASS  NS=3;DP=13;AA=T GT:GQ:DF:HQ 010:54:7:56,60 0]0:48:4:51,51 0/0:61:2
20 1234567 microsatl GTC G,GTCT 50 PASS  NS5=3;DP=9;AA=C GT:GQ:DF 0/1:35:4 0/2:17:2 1/1:40:3

Figure 23. A F]% £ &4 i #& 5% (Variant call format, VCF)# &) « T B4 ¢ 7 1141 % S (Header)fo Fat 4
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H(Body) > HATF M3 5 112 259 & 15 % F A (Mota-data) 264 > FHA 4§ 22 FHPR LS
IR o

— Data preprocessing Variants discovery Filter and annotation

,,,,,, Raw SNPs + Indels [T 1
Raw Unmapped Reads e Analysis-Ready Reads :
uBAM or FASTQ = : = 3

1
. A E [ Filter Variants ]
[ Map to Reference ] ' Call Variants Per-Sample H [

HaplotypeCaller in GVCF mode [ Refine Genotypes ]
|

GVCF m @ § [ Annotate Variants ]

4
[ Mark Duplicates ] b

: : : Analysis-Ready [
| H H
Recalibrate Base ' L[ Consolidate GVCFs ]—J §

Quality Scores 1

: I :
E Joint-Call Cohort § [ Evaluate Callset ]
Analysis-Ready Reads : SenctypeGVGhs : o A‘ o
‘ Raw SNPs + Indels [ 1] :
"""" [ Troubleshoot ] [ use in pro]ea]

Figure 24. % B =24 +7 GATK Best Practices - Germline short variant discovery

Il

Raw Mapped Reads

{«

()% B33

ETIRN

AR AFIER TR FIF ARFRAAFIHE > 324 % VCF ¢ 2 SNP 2 dbSNP
(Build 150) F AL vt 4 > fe pFy @ * ANNOVAR kiif2e oA FIR R o #rarfieang R Fae

£ %R AT ¥ 0 5’UTR, exon, intron, 3’UTR & intergenic region’ 4-% SNP i+t exon
2. o £ %~ Z %> Nonsynonymous & synonymous ; % £ §_F 3 conserved region; ¥ *F » #-
LSNP AFAFTALUSFELEME > ¢ 7 TAIFR  #H ~ T4 2 F (Missing rate by sample) ~

5 Al B A 4: £ 5 (missing rate by site) ~ £ 5% & I (Hetrozygosity rate) ~ #-] & = A FPE A&
(MAF) ~ & %1447 & (Genotypes frequency by site) ~ 2 % A4 i 83t > & 7] % 4 # @] (Figure 25)
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(d) £ F13] = ghAt >

A 7]4] 3 4F (Genotype imputation) ¥_— ﬁﬁ%*?ﬁ%iﬁ e 3 AFA > HAEFRKFL T
(Genotyping) s> 8L2_ % i+ 3k F](Allele)i& (7 FF B e & o AT ac {4 AFE2FTAHE P SNP
TR A SF M gL lﬁlﬁﬁiiﬁﬁ% TR AV P kR HE
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(-) BFHELBRBEBIRRSS

(1) Rha R

AELEBARS £ SRR SRR I L HME CL AR P B
FHEATR Y 2R LA L EETHRE SFLRTHERES 2 S3(& 8.0cm ; F 3.2cm) 0 £ 4 > #a
« o2 S5(E 9.0cm 3 E3.6cm)t R EE X8 % AR L ANE R F RS
%%ﬁﬁ”ﬁ%W%*iikﬁuﬁﬁﬂﬁfuéﬁﬁiﬁ%%ﬁ&ﬁfﬁ°%BESJH$
Biat fskZE e A ayr 360 BHE > X E374 S ¥ od PP IfE
2 #® 5218 @ $fEdhe Figure 26 #777 » W #S3 2 S55 A b ¢ Tk % T S3
£ EPEPrfAs (AR I P LER T EBAREP B AF P P Matuta planipes)
TERE A 3.6~80cm SS e E N 13 A FfAs AR I P AREPE AEP
&> ? B 43 48~9.6cm °

WA ERRFABEE O 40 BHRE  LFET2 R VS RBL IR 2 BKE
5483 fEhe Figure27 #7151 o R S3 22 S57 272 W TE2 B % Ao S3 R 3
L $fhe 7 A3 B % L I&(Charybdis variegata) ~ # < ¥&(Charybdis hellerii) > ® # %
A2 32~78cm >SSk 1 B4 > Ffae 7 L+ 47 B(Menippe mercenaria) » ® 3% 5 6.5
cm °

Sd AT RHRET > PRBDOERTIEMAR ] 2 FL R A FEE T BRS A SS B
Ik P B e Bl S3 F(Figure 28) » S3 4 3+ 3.6~8.0cm » S5 /1 %+ 4.8~9.6cm > 7 4 1 EEF &
ERERRNERAE c AERY RSN 2024 & 6~8 ¥ BANEP AR 3 A Bk
A @Bk~ 5 S3 ¥ S5 % TR n e e R b e P PRI AR T
EAREHERF P FHREBHEIRLE P PES LA HE W E AAH IR

(2 HWprAIRZH

AT 8! F- IEP P ELEL R REERBRERER Wb w7 &

i

E T BAMEET N RO AR R ERALHIR2 HE L6603 0 R G 48

Bawuld S32 )% S5 &)kt Mo H Y S3 B E R Srych Pl (B A L LRl 8
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(P EFE 5 72cm> P HE L 55emy P EF 52 7Tcm)E s g3 F1 E(PEE S llem ? &
Z47cm T EF 5 29m); A S5 e R FRY A ERlaerFHR AL 28R E 205

7 AR 128cm-~ A E Sd4em >~ T A B 33cm & T A E 123cm s T A E 57cm >~ ¥ 33 3.2cm 2

Ao T HRERET T R LRI HE X660 B o X ETIZ LT B AT
4 Sep @t n > PR FHERN T BE ) 9om 2 GAME L 5 60 & o Aot R A

MR RERBEFRREP TS FRLRBL N2 LHE B o

Tt 2024 #9700 2025& 7T P& O FHRLMIEIRIBA LR BE R
BOMEBEFEWRFTHHLP 2Z2BEFALT BT A2 LR cFHRESHT LA R E
FRHLIAE SRR IPF - BIE BN K IR R IEE L7 B 40 0.58~169cm 0 T
99 HE 5 1071 em~S1 29 HE A 29~169cm > T EH5 5 9.8 cm >~ S3 =T & 40
0.5~133cm > L3527 HF 5L 99 cem~S5%2? HE /A3 2.6~157cm > T35 BHF L 92 cm > HE
2O ERE AN 11~161cm > L3597 HF 5 10.1cm; £ S1~S3 S5 % ¥ 2k w43t 57~308
g3~350 g~ 8~249 g~ 5~416g > TR E 5 96.1g~ 1262g~ 136.8g~91.5g° =% § Shehi & §f
Er s bk F FE LA FH 2 E R I P Leanff eSS I HRE 178 ]
SlEe6l & ~S32328~S52128 -H? » HReFE ] Ocm2Z BHO6 L biZeik i
T ER 34% S1 g 1 & 0 ik 1.6% 5 S3 g S5 A IE LT O om 2 BRL o
Bilegh  NEREHFEZ I ImiE KT B AR

BT RE 2R g R B(Figure29a)v o @ e KiE LMk R 2 G f] 7 28 83
em~Sl 22 P 8% 89 em~S3 2% 90cm @ S5%2 ¢ »HE S 93 cme HRE2Z T HE
53 T~12cm 2. B > S1 2% HE L& 2 F3 7~13cm 2. F ~S3 23 & & F 3 9~13cm & ~ S5
P27 BERA &L F 3 7~13cm 2 FF(Figure 30a)- % ® 2% 2 7 2 3§ fffl » # B (Figure3la)
PoHRESOL T EFPERE X BY VRO BRETETEF S1ES3A BRI ERATF
Bl acer g 3 S1 mena # v 428 S3 2 R BRI B Y WRF T BT ERR SR F
WM Euz SAMeET B5 et LB Ay 2 Kruskal-Wallis # % i& 7 2 % fF ( Control~
SI~S3~S5) z 22 ft e e BEE T w BF Y T2 LR AZHERE (2=6310-df=3 >
p=0.097)> 7 FHMH 37 > LRBRIHT XL TESe L8 by AENIHE

i - 12 Wilcoxon rank-sum # & {73 & 2t gk > 2% &7 ¢ Control ®2¥ S5 w2 [F
TakFL R (W=41367.5>p=0.008<0.05)>S3 . S5 @ik EALR (W=3786.0"
p=0.049<0.05) 357 S5 E 2 T REEF A BT H @ mulo b BHT BT S

Il 9em 2T A AT FARTBFEA A RLMBERFEE TSV HAEEFLER
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(y2=5.047 » df=3 > p=0.168 » Table 5) -

- LB ARz " 3 F (Figure29b) > e 8z 79cm > Sl 23 84cm»S2 w3
88cm: > m S3 i 87cm Ao Ae AWM 2 HE B~ o HRET BT 5 A F 3 7.1-88
cm 2. > S1 243 7495cm>S2 23 & &7 38499 cm > S3 =] 43 7.8-9.8 cm (Figure
30b) - ¢ 9 EFE T KA A F F (Figure3lb) v 2 S3 w2 ¥ 7RA # @ RAPHRA » &
FHFPEDBHEIARI KD HRERF Y R T BRETE T RF R R A
1 Kruskal-Wallis # #3872 27 BEA T L3 HFLE (p=0038%) A A L @i dn i
Control # S3 (p<0.01%*) 112 S1 £ 83 (W=1512.0 > p<0.01**) 85 % » Héptw 2 kit hg
F o 9em H P HEgnEE 2 % ~f v k] > Control ~ ST ~S3~S5 4 8] 5 19.5% ~26.7% ~ 41.9% ~
4N2% 3 TEHF (p=0033*)> Igr 2 pdmplenbdZ e t2 0ot m5 FFL
B HY S3 & S5 #F (Table6) -

P fjﬁ‘?‘\f_gf_fﬁ; {#m = (Figure29¢c) ¥t ¥ =# % 128cm~ Sl 2% 133cm > S2 » %
130cm > @ S3 2R3 142 cm > BB and K4 A B EF % ok - R BT
A2 10.0-15.0 cm 2 B > S1 A (% 7.0-165cm) > S22 % ¢ 28 13.0cm 24 > S3 &
R A 3t 12.0-15.5cm (Figure30c) - 4 7 # 52 7 3 #F~ # B (Figure3lc) ¥ L% 3| » v o
AEAREd S Rh FEFH L W 54 R PR - 1 Kruskal-
Wallis #& Tt 2 ? 5L F > 25 E8HF (p<0.01**) g7 3 FiMmRlen 2 P 2T 54
BEALR o & e Wilcoxonrank-sum & & 1 : Control #2 S1(p<0.01**)~ Control ¥ S5

(p<0.01%*) 112 $3 #1 S5 (W=645.0p=0049%*) LA F LB ; H o ALHF - L3
#F 9cm 2R Fantplm T o & &A% E Control 96.6% ~ S1.96.7% ~ S3 100% ~ S5 100% » —+
¥ T AEEE (p=0.678 > Table 7) »
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Figure 26. 2023 & 5~7 * % £ % #a55 F F5kd PRBEL N2 S @i 5 &P

sanguinolentus); (b)i& i* ¥ + {HP. pelagicus); (¢) = % P (M. planipes); (d)7F % & P (M. victor)

Figure 27. 2023 # 5~7 * # * & fr# /a5  Fskd LB 2 (s HF BP

pelagicus) ; (b)#% < #&(C. hellerii) ; (c)% i &(C. variegata) ; (A F 7 (M. mercenaria)
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Table 5. # E Mg F sk GAMEFe /R T Aot %
(a) Kruskal-Wallis # #_
g
Kruskal-Wallis (Chi- df p-value
rank sum test squared)
6.31 3 0.10
(b) Wilcoxon rank-sum # Z_
Group H2EE (W) p-value
Control vs S1 47585 0.10
Control vs S3 42180 0.93
Control vs S5 41367.5 p<0.01
S1vs S3 8899 0.93
S3 vs S5 3786 p<0.05 *
(c) + = #& ¥(Chi-square test) (iE 9oem & T = 2+ )
+ g
df p-value
Chi-square test (X-squared)
5.047 3 p >0.05
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Table 6. 4 & i %iTh 3 2 & ARG o F 7 B 552

(a) Kruskal-Wallis # #_

R

g
Kruskal-Wallis (Chi- df p-value
rank sum test squared)
8.4251 3 p <0.05%
(b) Wilcoxon rank-sum # Z_
Group g (W) p-value
Control vs S1 5378 0.51
Control vs S2 4214.5 p <0.01
Control vs S3 4708 0.59
S1vs S3 1512 p<0.015
S3 vs S5 1101 0.31
(¢) + * # = (Chi-square test)
+ = &
df p-value
Chi-square test (X-squared)
29.556 3 p<0.05
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Table 7. #EPmBEF R b BT BRELT? 2%

(a) Kruskal-Wallis # #_

AR k=S

g
Kruskal-Wallis (Chi- df p-value
rank sum test squared)
11.879 3 p<0.05
(b) Wilcoxon rank-sum # Z_
Group e (W) p-value
Control vs S1 19814.5 p<0.01
Control vs S2 18211.5 0.073
Control vs S3 16457 p<0.01
S1vs S3 2878 0.47
S3 vs S5 645 p <0.05
(c) + 7 #& % (Chi-square test)
+ 3@
df p-value
Chi-square test (X-squared)
29.56 3 p <0.05*%
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457 fe L KRR B B d SR g
HEEL%87 (Table 8) &7 I (B AL T tha & P+ PREHFIEE > 2% 2P Sid
(Charybdis feriatus) i F % 2 @ #2820 &) @ ‘2 & & F (HPortunus sanguinolentus) iz e
PR BB (241 §) o B4 LR N F H(Portunus haniii)i il vk 2 B E > WK S & oo
hARERE L ER eSS 1398 > bk R EREE K T4 L o

Table 8. # ik & KR T ”T#ﬂ’)ﬁm‘f&"‘ i,i‘ﬁiw.

Treatment el e Tk X%k e ke
4 o3 3% Charybdis feriatus 2 - 5 4

L A v& Charybdis natator 54 12 10 16

% X ¥ 3+ & Portunus haanii - - - 4

iz & ¥+ @ Portunus sanguinolentus 241 177 161 148
&% ¥+ (& Portunus pelagicus 7 11 7 17
¥ 7 ¥ Scyllaserrata - - - 1
RER 88 139 100 74

GLMM & % B 7 (
Table 9)~ 477 w e dcs B 5 H EE &2 7 EA i3] % % - Figure 33 &1 7 7 £ kh{c
BHFELOPT FHRABZELHEEF T R OUT -3 o tr? BEE L RAE S
S Y Lt I R P T

Gt JE B Hc S v % e GLMM 23] ¥ (

Table 9a) > & % B o1 Fk{oik L {3 & 0B 357 B F (P>0.05) =% Bmﬁ)ﬁﬂ v g
Pl P RAEF -V R RABF R G REP A BN B R LEAE T
HEZRL - B5NTHRAE X ARBREFH E >k AR RTE 2 dol o LR ey /o
ARTAEIEFE AP RRAT N D APEHES OMETE(

Table 9a ~ Figure 32) -

AT AT T R I Y (

Table 9b ~ Figure33) > %4 B L B P @Y B 1l 8 %3 > HY BT 253 BFRE (P<
0.05) # ¢ i ja s s (27 WK F <0 H

FEWAE ED SRR ET BT IR RENRET BT ALIIEF LR

B kAU T BT N AP R R T RTINS 6 %
41
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Table 9. 7 i £ LR PET F EEE L 7 2% GLMM 3] 5 %

(a) Estimate Std. Error z value P-value
Intercept 0.6640 0.1270 5.227 <0.0001
Blue light 0.1071 0.0902 1.187 0.2352
Green -0.0458 0.0932 -0.492 0.6230
light

Red light -0.1129 0.0954 -1.172 0.2410
Patani sea -0.3180 0.2284 -1.392 0.1639
Penghu -0.3369 0.1594 -2.114 0.0345
sea

(b) Estimate Std. Error z value P-value
Intercept 8.1989 0.4615 17.767 <0.0001
Blue light -0.1442 0.4437 -0.325 0.7452
Green -0.3107 0.4557 -0.682 0.4953
light

Red light -0.4262 0.4616 -0.923 0.3559
Patani sea 1.9319 0.8250 2.342 0.0192
Penghu 4.0985 0.4253 9.637 <0.0001
sea

Female -0.0156 0.3799 -0.041 0.9673
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Figure 34. % a2 o+ B EF £ #F

BTREAGY  FERABHESRF BT ERTEY L7513 10 cm R 0 Bk i L
HF g @ kR e w|(Figure35a) o A + & fra B i Eeni + B BEAFRE > Fhles
Bkl BEA TR Al Efeie K BT 8T A F R R S 4p I (Figure 35b) o #8418 4

~

AN HB R A THEY 2123 4om 2B ARRENMDOLIRET L Lk

¥
H is 2k le W] (Figure 35¢) e sz B % &£ 1 7 b F Bk ia 8 ﬂf“*/ﬁ'ﬁ%}‘f#ﬁ')ﬁ—? oo %ﬁ"ﬁ
B FEAET A ',fi":fp” CEnA & F)E 0 @ kR e ] e A s o
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Figure 35. 7 pia & ke ulif L+ BT 30° B R £ B

F e kiR e w2 w] akk (BT 304 E £ (Figure 36)% % K1 0 GrpienT o E R 4l
frEkefeEd S RFL ke S opliEd® AR TOPEEY > ko id &)
BEryleicdke FLERERESR S c34AP 2 FRREUHT b Eue @i Bk £ 5
MEZR AR Sy s M0 vp 5 ndf g - 0 sk w5 g ok
{4 -
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Figure 36. 7 p &k hie s & Mui+ T o g &

(=) PpELLED Bkplidep® W FRy

FrhAazp 9% M FEL BB RSB ¥ LREP R L AENELFT
%0 BRI F LB LED £ 1 B R > T 0 & 4+ i i Bidic 88 Noldus Ethovision XT
At Al d REREPELREL LR kiR pE LED #F k- ke B L% Ehe
Figure 37 #7771 & W 4 ¢ 458nm ~ % ¢ 526nm ~ = ¢ 630nm -~ v ¢ 460nm > F P v kayh &
e R T iEd g H B Rkt b Bty Rl R B NA R FAHEES LA L EAR
P~ fARK s mARMS I A R AR

BAE T PE 2o

MEREFE L TRHHFY NRE B3 ARRE

ERPHR IBFAHHEPE LRI RL, I BEn > s R FR kb ke ke gk
FReU L F30NTHR GEHEGATTHOEF  FTAFFT LB IB LT IFPFRTNY
2 BELBIEE o F U Bk F By kA 9 (Figure 38) » Sz sk e T 193k 4 0.785cm/s 0 & ik KA

*+0.33-2.52cm/s > 5 RT3 5 5 0.73cm/s 0 & EiE 5 A3 0.38-4.83cm/s 5 %k B T i5;

(=i
da

% 0.686cm/s » % i K A3 0.42-2.23cm/s ;v kT imig K L 0.682cm/s 0 & feig K43 0.38-
2.82cm/s ; &k T35k L 0.885cm/s 0 & feiE F A3 036 -423cm/s > A1 A B R PR
#cF & % (Table 10) > S5 B r ke ke s abled BF LR (p<0.05); Feigke
Sk AFLB(P005); Gk Ly HFLBEO05); v kgLt HFLE
(p<0.05) » £ i * * R T 3% L T & %4 7 $5& £ B (Table 11) -

FEPERT LT85 (Figure 39) R £ R THFFTEHFRFHL 2u i k22 436 ) » £ =X
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(ﬂn

BAEE TG GET L A24) BREFLGLeTHFTRET L3907 BL7THFTRETL
Bk s 222§ HA A FReTHFTHTL 19 4 BFLALLTIOFTRER L
181 #) = &A@ D 33 % % 354 ca 17 5 & (Figure 40) » = ke T355 401 f) ~ e o3

kz]

A
ETS

463§y~ kT 305 4654 v v R T35L 44545~ @k w355 373 45 0 §1* ANOVA H 7
FREEAT BETEREF LR (p>0.05) (Table 12.) -

TR X~y P ¢ & 30 fyiesh- =k Bongk > (Figure 41-Figure 45) - 3 5% &g o1 b (24
TR A RS SR I
ks ket S AP REY BB REEL SEY AP KT BFARE S s o P
P FMi ke ;R PPN RIB I HRRRE G F L oA E R BB EF
,,a*,s MEFORT LR RBRCEHERT L - A P Y § AL F

U E 8 e e s A I

TP BB 12022 £ 9-10 " AR R
B irad (2 FEM I HARESL L R IBREF | ZAa LRI 3 ELPTR FTRETEK

KPR PR HY ke « 200 % hf R E

Ppdg 7 doTable 13 #7771 > 3 X FRF oY £ 15 L % § LB L en B 20 )
pERSBA N e mEFRY > W% B YERF R RO 3N IREEEFI LI T

% kAR 0 R B A G D ABREP

2028 FAELRBARTHEAAFLAS2AF K EHE 18 L3 Foeii- Fk
Foh 3] DB LR ALERREREL 20 02 Lier B AN 3 HATEI g 0 W
PRREEFEA A Ry R AT B IR IR 2R R T - R

PRt L 260 M7 A EARE(2023 #F 6~10 T )i 7o R A £k 142 &£ S R
P22 BT TR G 16% TR G 84% o iputip 7 B AL S Auikil 10 AN MR
L] B BN T E o kY S TS EBMY F 3 E B EFE 1T% EES S
79% > ¥ 3 3L BMBG AR R REHRILTEE FP AP AEFFPE kgt
BRY BT T L 0% BT L 100% 0 55 F Rk 2 e RRIEERT > L K B
WEIEFF AR AL R Y Gk fr PR T - TP ARG A LRk E AP
i 44 (Table 14) -

2024 & 9% 18~19 p 2 10 ¥ 17~19 p =8t F 19:00~21:30 ** 5 26 BB~ 4 EARE N2 iF
i eFREEfELeR R A AP L LS Lt 1 LAY Fher 328
F2REE 4L R AREY > T ARG F R AR E 0 FE R H AN 92.9%
T1% > 5 p T35 B 5 241cm/s(Figure46) ; ke x 22 & » H ¢ 5 4 8357 > ig{7 2 35 {7 F
> u) G 81.8% ~ 18.2% 0 4 p T 35 B 5 2.66cm/s(Figure 46) » #u| 3 Mg L e F N2 &
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Fohpe PR B2 @ PRI A4FOE LY S RplERLE S FRe L Ap G R
i pe R S % o

A BRI R AT TR %5 2 F L 3 (Tablel5)> 11 2
FIr 2T A P RREEGFFLE MR R ET L R F L B (Table16) o A= ™~ #-F %
PRVERIPR ARPEESH BTG FAFRY RPFEF S8 48 3P
EEF LR 228 HTA 28 AR RPFEF LR 28 WpEEiF R 168
FEPPREEFL2LE T PREEFL2L  VERIPEEF LY 7 oa 5+ 2 kP gk
FA P B S EET R R ET AN FLE(pP005) AR TRELEHT TR
k¥ 4 B (p>0.05) -
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Table 10. 3P FXFHR T L AFNFHHFER 2 VLA HEEKF R *SHFT £ (=
0.05)
G“g Mean  SD 4 A R 8k &k
ik 1.010 0533 1
Ex 1124 1.081  0.2439% 1
%% 0853 0487 03624 4.9419* 1
Gk 0929 0585 08189 3.4052* 0.689 1
&% 1267  0.853  0.3861*% 1.6056 0.3248* 0.4715% 1

Tablell. TP FLFHRT S LR PR R2AHIOELI TR *SHFT £E2(@=0.05

%= Mean  SD 41 Bt A 8t 255
4k 1.010 0.533 1

2 1.124 1.081 -0.401 1

Lo 0.853 0.487 0.974 0.949 1

= 0.929 0.585 0.504 0.682 -0455 1

£ 1.267 0.853 -1.163  -0.448 -1.862 -1.518 1
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Table 12. 3P ¥4 F % T LPFAEoHER2 ANOVAE 7+ B A7 *SE 1 L 80

=0.05)
S g Mean  SD 4136 Bk A a %k e

(S 1.010 0.533 1

[ 1.124 1.081 -0.401 1

53/ 0.853 0.487 0.974 0.949 1

=R 0.929 0.585 0.504 0.682 -0.455 1

2% 1.267 0.853 -1.163  -0.448 -1.862 -1.518 1

Table 13. 2022 & T 3= 7 2k 56 22 1 L ¥ 2 K 38 BB & 0 F Bdp st &

=T R EAT®() EAT®R(2)
S EXE 1 11 4
BRI E D 0 7 2
Rt/ rEE 1 4 2

Table 14. 2023 #5226 18" § EAFR 2 & K (@07 b Bk s o v 0f {7/ (7 5

RS o 5 i 7
FES ] 142 84% 16%
Fhe 75 79% 17%
ke 8 100% 0%

53



B ACHD)
L]
iy
o

HiH

FR

Figure 462024 & 9~ 10 * T3 F % L 22 & & 0 T 35:¢ & (cm/s) & % B

Table 15.2024 & 9~ 10 * Ty F %L L PF FHFR A2 AT OHLI THRZ ¥ HFF £

(p=0.05)
%5 Mean SD B2t &5t
Bk 3.754 10.524 1
£ % 3.297 2.169 0.521 1

Table 16.2024 & 910 * T3 F % - 27 b X AP P T L EHNEF 5752+ > XR

*LEF T L3 (p=0.05)

% g EATE S #ATEH ETFE #FATR TR
Bk 26 2 93% 7% 0.233
&% 18 4 82% 18%
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Table 17.2024 & 9~ 10 1 757 $414 (B0 Ptk 10 15 5% %

(A)FkE
+ @
df p-value
Chi-square test (X-squared)
2.11 3 p>0.05
(B)& £ &
+ =
df p-value
Chi-square test (X-squared)
7.12 3 p>0.05
(O & kihle
+ =
df p-value
Chi-square test (X-squared)
4.45 3 p>0.05

(2) # b RimEH S Frap e F

ﬁ*] P\—:’/,Et‘v\

F RS

T PeiE b o

g A 6

2 {¥(Chionoecectes opilio) ¥ @F4# 5 ¢ HFEFF T » F 7 % iE

KB IR

3 T ;¢ ~ Davidson Solution Z &| ¥ B T w54k T - wiFFiE
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&

S Sl

i e

SRR AN EFE TS £ EReL ST

Kz BB

R

R B AP EESE kT T E S

R B AR AT AR RS BRARE S P %
REI T gurnibi 3 o R R A B Sk~ R 0 T P

P F R %+ Nguyen (2007)7 3 LED % # =

FAER PR ERE > FEF 30
B ERBSRA R AR k2 kR > BBET 30 A 481 e B R
f’r""’a,‘%} BEﬁ’Bi*w; ‘il}(%-—.ﬁf‘ ‘E'

s R G R G 20%

Ol SER i SR R A Rl s g AL S SRS

o b

Sl B L RIS ARy s B
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B AR 0 2R ~“,$ TV RN BERT e kR R —l;g;fngr} 4 T %@ﬁbg—frﬁr“;ﬁi v X
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ey o

2. BRAGRIFZ PR &G * w23 BT RIER G (2 * L4 F 2 » Davidson HZg)>
YU ] ®R v A i~ Rk p 8(Figure 47) o

3. #pRdmir e mEY I HEEREE LR kR o

4. 2z » Davidson 7% ® gt s 24 h o

5. Ae i MRimh 70% @Y EEI 1 X i b
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RIRSHERE -

7. &P LrRFHERL A BRI FRYIRSE L AFFHEIR R

oL ERF

(=) mRerea
1. #o @Bk D 70% — 90% — 95% — 95% — 100% — 100% » & # 1 -] P o

2. Z 9 FHEM 13 x 15 pFo
4 bR MY EREFE

5. ﬂ&-p‘i‘*ﬁp\ WG P F 3~ Eﬂl%ﬁg_ﬁ: ¢ i3 %E!ﬁ;fé%ii,_‘, o f?éiﬂy‘#ﬁ—)— f‘?jﬁﬁ—;‘i’

BFFrenmg (IHFFI)A rp %I LR FRHER-

56



() @ §> %

EX

1o Rt > v S > 3N mER T .

2. BR SOpum:itf7:i i+ ¥ 1435k > & 52 5 pm(Figure 48) -

3. KE15%® > P B4ed > 10 ¥ 2 % r [mg kB Y (CkiEX s 40°C) > H BB T o
EERY L3 PE D o R LR R AR

4, FAFHRIFL F 455 o £3E 30k Fo P > THFIE S S0um e
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P
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4, EAFFETIF 605 o £3- 308> 5 > TIOFR L 50 pm o

5. ¥ %5 137-40°C B > FER*? F E FHF o
BRI AR R I SRR RSB AT 0% AR HREEET AR B F

(4% 10pm) T » = ffendessy P 7 LR kRwe o e Tt/ s a2 %

BH G F PR RS RE T FRE 5786% kil 49.89% 0 &k

0.54% c I A B R kB 797 BE AL REKF 4832 BE AR LkTTRE K

B 4035 B A B(Figure49) - BHABE 2k = ok » Bk A7 E- b kAIT ¥ A2 R

KO Bleng it PRIk e e sk 0 @ %k AT Pk B e e IR R 53 -
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57.86%

49.89%

Figure 49.7 e j & 6 iR B 5415 44 =+ FR 3k FJ%‘*« Y B2 tme e zF\, A 0B - WA IR S

(2) 3+ @ 2 AT BT AL SNP A3 ki Ha2 4

AT -EEFI4ERBFBERFIEFES0L BRI FE50 S4mizz 16 &L AEn > A
Fle g /A1 - £ &EF 1,692,970,459 =c & R TR PR STA ST EE R ER 1,628,612,508
PR TR 2EEE 96.2% o £ L= k¥ F {B(Portunus trituberculatus) %4 < 0 i {7 B (re-
mapping) ; 4 fEi% R Flle f F mRA S HT78.02%) ~ = B K3 (H(54.22%) ~ hmaid
(28.29%) % & A 18(33.46%) > d iR AKF P2 LEKRF PEETHORZ K PR A HET PR

mE A

(Portunus)“s 4 £ § % 0k Bl | £ 5 o thondh 2 § /i85 4 3 8 (Charybdis)» £ {82 51
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AR S UATEREIRE . AR AT EA T T %A LTS L g
T{& SNP 4 & {i {gﬁiﬁf HNE L o e ﬁjé‘_% i%ﬂi?#—'“’ » — X JE ¥ 97,078,202 SNPs i+ 2L >
;r‘%%‘rém%".é  EE B \_—‘;%‘r SNPs — % 3 135,593 =8 - ' 3 \_—‘%’Fﬁ SNPs > g-% 2 R & g5 i‘?—%‘i

B PREIERE F PR S A BT B T 135,503 SNPs 2 BhiE (7 & 48 4 17 (Table

18) o % 1 L P Fad B f#3% 135,593 SNPs B8 F A A A 3 P 2 AT BH L 5T
Bz e F (e d WFIL o 44 AW T P AES T 135,593 SNPs BT R B AR A F

AR MY o RRFT U H 5 135,593 B & SNPs BRI G B enA ML e L 2
¥ 15 ehid 8 43 14 (Figure 50) o
#¥ 3 F 2 AT SNP =8 A FIA TR

BFE- BB > SFAEFD AT SNP B F RS E £ R BIG T AL o
K- 9 2 = (Hardy-Weinberg principle) » Z i % #H# F LT # 63 3T e - Fla A Fe
FToALEZ L EH - SNP =Bl FPIE S G & o AT AV 146 § ks {35 135,593 SNPs -8Rk

SRR B R RS S ¥R R TRk Ml o

A
L
=
=\
\_
V’q,
".\‘
‘p‘
&
LN g\/
—
YN
(5
EQ
e %ul

AeF > P H - A RAERE DAY A 20% A
LrATEFHRABREEORE FET L BEM TRART PR ARSI B R RS
o IR LR T LB 2 AR THT P AR FRA @il £ R 80
o LR g e i e P(Figure 51) o 1% 135,593 SNPs =2k A4 51| F 43 & 146 &%
[ il 4L B B (diversity index) » £ 146 $o Nl @R R R R WS AL T H > BEER
AT ETHRAE BB R LR EAF R B A AR AR RE  F 0 R
B2 AF T T 2w @ 4p WA 17 (Figure 52) -
17 2871 SNP FHE A+ BPFBETNA BT R L4

ERAEREFXATOFTHRE Y DEHE B TV LA BETE L BE R Ao P
2 57 HH(phylogenetic tree)sA # 3 F 7 L M M 3 R S D 0 TS PREIBE o -
bR TR e RS e SR PR R R N2 R T SRR - B2
chm L5 P A 135593 SNPs = BEF A §orc gL s BT g R H Y 5 kB
MIIFY AL L > T H AE o EEIL LT R RSB P - e B RO %

Fl o4 3 RT B TR b A T TR AT A LB BRSSP LBR P
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(Figure 53)° 5 7 B falr — e @FnZL B B2 B H BB HAEF h F]> - # f1* K-means cluster
AT RRERT R BEFRBAKR S PR S Bopnia s LR E K S By 2B
2B PR &S5 A S AP R R B F o Tt Akl G - fA
2l BEF  CBREFFNRABAERLR TP AR FE SR LA R EBR R
By VoA AAERY AR AAR A B T BRI AR R ER
W (Figure54) - 1 5% £ X E P HiE 4 17 2 A Flie 5 57 E 4+ (B (Portunidae)t% = SNP
L AREE o S e SNP 2 fREFE T U KRR RS ESE RS R e F Pt
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Table 18. > & ¥l %A ' %7 SNP A 5

ok

s 4

VE

[lumina NGS raw reads
Next-generation
sequencing
&

N == 7= A== S
Re-mapping
= 2 % Mapping rate
Re-mapping

QC of raw reads

% 75 #2 F & Mapping rate

1,692.970.459 reads
Q30 & trim 1,628,612,508 reads (96.2%)
ref. Portunus trituberculatus 1.056.,031,319 reads (62.37%)
avg. 5,714,027 reads (54.22%)
avg. 9,379,005 reads (78.02%)
7t % Mapping rate avg. 2,852,536 reads (28.29%)
% %% Mapping rate avg. 3,827,816 reads (33.46%)
1% A% T % SRA Mapping rate avg. 26,764,651 reads (85.19%)
= J#% F 4 SRA Mapping rate avg. 78,491,414 reads (93.84%)
SNPs calling
SNP calling & QC SNPsQC1 DP > 10 (Samtools) , QUAL > 30
SNPs QC2 MAF > 0.05, Missing-rate > 0.9

97,078,202 SNPs
83,316,735 SNPs (81.98%)

135,593 SNPs (0.15%)
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2 ~ it
A REE A P d KA f R R IR ) A (Rl R i 0 34
MR FR3F ~» MRR IR H 0 1 33 PR R IR BRag S et o R
MR P EAEARS AL FTARL b § 3 BDNA FREZEHEA KT 75
A PR S S I E R SR TR LY chikdo A T TR S {7k (R i 2
TR S TGRSR TR 2R EL S ET LA R
T AR R LR T RERT L BB AW A RRD ARG

FdEy TiaF L kiR b PRER IR N GRET RS R BT L P RE MR TAAMAIA

\“}{.r

¥ o

7
“~

(-) #EPWmPaKI

AET B LR AT BT T B T RF)E R R A BT R
T T ERECT R LB R A HTH el o 00t B S TR A PRI G
oot P B BEF AR o ip2 Sarada(1998)F7 1 B A AAAE YRR K P
BE-ROGFIFRAFREFIRET RT-PREDIHETLE - Ko o WG L ESY S
4 ¥ {¥(Callinectes sapidus)iiF= 7 & % B e fovp s @Ba” BT A" REBR 2B 5 A%

-

AR L PEFT ET RO A > £ BB BrdE~ (Olsenetal., 2022) o 2577 87 4 1 &iE F ok

3

RHEGOR T ¢ PBHL R ROF T 5 0 2 B % 2 Olsenetal. (2022)ie (7 F i#
WM T T F AP o

PR R RIET T AR FRE N bR B L AR B
NAEF E ] 6.05 2 dF A RTE 0 A BRRAVRIR T BRE T EXZ BN S F
5.87 =& enF] A5 Tk 0 AR P W # % 20 S3(& 8.0cm ;5 F 3.2cm) ~ S5(& 9.0cm 5 % 3.6cm)
BRI 4 AN E R AR ER LRI ] R R R LRI < o §
voA R FIR LSRRG E - R TS N dp e e R B LR D IES 2R R

FRII By IES PR BRI E LR E < B R LR F R RN R 30
ARRE RS A RS B GpniR s LR S VA RS Y s AR LN RSB

EERFERARIE LRIV AFEFE N AT ARV LERECAEE £ 5 8
2 FRMEF TR ko TR D AR B L PREEZ AR 82 4

A EFHE S FPLRBRFAY > MR EsridarT 3 ¢ UFA L RRR TR FERE 0
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Flegd 2 H U F AP BB A LRGSR AEAF R T AF RS BT Rt A A
LRI RR R A P R g

AFFE 2024 & 87 A PR HRSE Y B 24K 630 A H S B ARk
Wamsier HERY B3 4 TRFFE LmIF L 0.006% AFF 7 A R %% % & Barnes et al.
(2022) %7 3 - 4HR M 4% 7 88 (Scylla serrata) & 0 vt i BRI oA RR LRI H A SR
P B EALAR S EHT 7 ARLMEHL D A ERLMREHE LT F K 02%:R SR PE Y
% Broadhurst et al. (2018) 7 7 &*4H B+ Ffler R LA ¥ 0 v g AR LR EfRA K
RLMBEH AR HEELR > BEHT ) ARLMER L AXRLRRR I T 1SR
93%1s FehAh SR8 7 st ?%15—;%&@:}?%&%%@5&3@ AL B ERTE AT &

KB RFPF LA ERL BB G FR AR LRI RERT N § 3 S Pagw i
>y T‘i“ PO PERFEFAILRRTH o FER 9 DA FREFHET T OERYL
IR BT R AR 2P A A e KR B Y USRIk E L G

ARG B WA R 7% i S 2 A £ 5 S5 % 20% ST % 4 21.7% 0 #

R HE 2 T 2 A EE Bk 254% - H ¢ 5SS ed NHPE S A SR FREE
BAR(Y A HE<Bem) > 3% % 4 A SR A F R AL F R § K (Lietal, 2022) - T EL e
FRESHEAHLFEDPFEASRP T ARG A BFRADERT - R F s £ RN
> A H R
X8 RS&KY kLM SN R F]G G PR BRI~ R ﬁ.ﬁ%i?fﬁi’éﬁﬁﬂi‘@]

BB @ g ey S3 R BTAATET AT 72~1lcm 3 R 0 S5 W RBE T -
123~12.8cm erfe + i i o TR RP AL P 0 2H L ABFOTRER 0 AL
FE A SFHR Y A R RS AT Y RERFIF LA R M AR T B H
S1 i miThar 51 7 2% 4.7cm 12T 2 B9 -S3 B w57 % 7 AR 6.3cm 11T g (R
S5 i TRAt 4918 T B 6.8cm T ER LR o R F A P PR TEPFAIRBRA 112 R

FEORERI R F AL RERREE TRy TR B @k T RTTRG S 2
¥ ° 129% Guilloryetal. (2004) i %3k ¢ <t FEH A7 7 ¢ > L7 587 cm v 6.03 cm el 3 Tk o
SRR AR 6.03 cm i TR o @ 587 om i MIEZ XL S EEP RS 0 P A BT
4?2 CPUEX g ¥F A8 > e i@ ? 6.03cm Mgl @ » o A1 &% & i {Fn
CPUE % ¥ &< o ¥ Broadhurstetal. (2017;2019)8 7 © +“d& 1 7 A5k ~ #c® fo & ~ el sk -
& 3£ F75(E /2 6.4 cm) ~ 4835(3.3x12.0 cm)fr it = A5(5.0x5.0 cm) » B R K 0 £F Ik E 2
AT R e AT T % o BRI EE R T 51~100% 0 H ¢ X AP R TR Tk A i o

P ARE LR IR AP 0 ARG EN & * 7 474 0[F] A 4 & (Broadhurst &
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Millar, 2018) > Boutson et al. (2009) L_%]’x RA BB § ol mIk(e 5K et 1) Retigg
ARSI FEOVRBE SRR ERE B AT ESE N Al RBE(R S 3.5em £ 5 4.5cm)
e b d o Ao BoiE Bengf B 28 70.5%5 0 B 11.0% o dF 53k K hdlicE & Broadhurst et al.
017y g ¢ s B REZ R P EE DM SR c R AE L RR Dz
€ BB A A R enfiiR > Ji Jirapunpipat et al. (2008):7F7 § B R B or A d B ¥ 1U4ENG § iR
(Scylla olivacea) & ¥+ % X AIREBIN 2 FE > ARIMPEE 5 BB il 5)(78%) + &
¥ = k& (Portunus trituberculatus) %= 3 7 0 3 B & IR e il s % (82%) & 3T TE IR e sl s K
(66%) o SFF rit > WL MIEEHE F P ER G A AR B R o R E R RN
%?ﬁgﬁ%ﬁ?ﬁﬁ VEE B S W%QA*P¢A%*WPE%P¢—ﬂ’ GBI G

FOFEAZIRAFDAIRFE P T AFEI FRAGEEOTRTRT F ROE R 7

WEEEY SRRSO R T YRR R A S BRSO E R
AL REP T B oS3 F eI R AT AT R A 8~13em cr o i s E WA R )
WEERAOANRE THY - AR RETER | ARFEL SRS FHEAEAYTE D
R s JARARAT c AP RS  LRBR VAT PR FR 2 WAERY > Hock
Fl AR 2 Y R PR A R oo

(Z) 2k 2HEFIEHFEFNHNTEIRPFRERISZR?

ATV RLED hA#H= R BEFREELHREREFIORE R RATRESR

%05 0T b

g

FRFEFLR OO RERALY - FRZ Bk { Aok 3 R F R BBE

%ﬁ%@%%’ﬁ%\é%\ﬁ%@mmaﬁwﬁﬁﬁﬁ#Muﬂﬁﬁﬁéﬁgwt“*u@ﬂ£926ﬁ
AP ERE AR GFEE AR R ORI T R AT R g R ek R v

AR ANRB R REER LR R R TR A B Fhed o ¥ HIERL %
FERPRe R LRI BWMAE G AEN PFLE I F BT N AT ERIF AR
RH B AT AR CEEN A TR RRE TN T RBELRY ¢
ERPEEMFLE R E 2 AR TR R kRS RS
HREBEEFRAR CELRT ARG BEF R 2 TP RER T R RRM OB R RLRE
B T T T 526 SR EARA G BRI E K 2 5 - 7 Carretal, (2004)F §
BB A ERIEN AP RAR T EAA B hE LN AP A e 2

FieFLe SMOEFRE BHREFFAL Y T3 R 53 (0.11m/s) > 78 Res F¢ 58N R
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7 & 2 (circatidal thythm) A Fp P eni¥p e v -2 B B w7 s 234 aE E R B 75 o

BEHLGES X IREFZRE s BESF KL - T8 FAEEN DS AR
iR AR SRR R T onpegy 2 5 505 i+ % (Winger, et al., 2011 ; Naimullah et
al., 2020 ; Becker etal., 2024 ) % F A% S % AR R @ ¢ Ao il e g EE R D 0 £ X LEX
ek PeUFEaEFLAR ke ERE A pdlea- Lo A EEEP 0 @
* IED B R PHRAGEFES AT RS -

Susantoetal., (2022)5%7 7 5B N FRF R A 4T EBmIk a7 b d LED BR &

Fod o FRERRBLE S RN NS R { ¥ 477-53m £ (F-F-%)% ¢ £

FB A kAR M s PR TR ER YN ES D PI ARELE  AE LR
AR PR E RN R 5 T B B F R (Figure 33) o ¥ P A &(Charybdis japonica)R| ¥ F & ¢
LED “# ¢ #9 5 »<3& 3 i & 5 (Yuetal, 2023) > § $(Scylla spp. )| EAfk % ¢ ~ Fd fro ¢ LED &
w5l @ ¥t d LED “iz 3 w5 5lsc% (Naimullah et al., 2022) o 34 i 2 a0 g e + F4L ¥
PR fE o AR R A 2 % T L F (Leeetal,2024) 0 JEiEE T 4 T 'F" R I 3
fEefe+ B 05 L p hdEchd ko AT Y Z Bk e R REFEERT B L R T U
W fBess Th ko it F ek 203 4 ET(Table 1) »

Nguyenetal. (2017 ; 2019 % 7 i ¢ e LED FH AR PHOHFEFI L B M > S5 8
7w v ¢ LED i 53 8 F thehik = A ot 2 {H(Chionoecetes opilio)shif £ 2 » » 5 B # 3 4p i %
§ LED &»c% b v 4 LED &% { 4+ (Coolingetal.,2021) » Nguyenetal., (2019 ; 2020)3% 3+
BEH A R GERED P LED BIF* BT b EMR AT RGP E &
Foomboerit g LED B 2 B 24 FRFRAFESI IR  RARF ANH G
P 5 kA A A 2L A4 (Fischer et al., 2017) o gt 7h > B8 A k4 HEd WRE L F Lo
Fla P E RO RGP R ko R R 2 8 (Westerberg H. &
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Westerberg K., 2011) » 457 3 %% frif2 A2 @H E R £ oW 7 %% 3 F > LED F¥>0 2 &4
EREEFREFRIFESE L AFTRESET LED BRI FH L AL LA FR
AR CETRAFIHEFIPREIRLEORLEFRATR G MK BA T 200 2% P i
% % (He etal., 2024 ; Sumpton et al., 1989)> Z {#F A 4 F A 200 =~ = T 400 = & jF4m 3k % (Ottmar
etal., 2022 ; Alvsvagetal.,2009) > ¥ *F 3 f 23 R4 H 0iE T RGP R L Re s
F AP o HF B E T ihs e PR E_26-52 ) Pr(Naimullah et al., 2022) » = &4 £ b % 96-120 /|
P (Murray & Ings., 2015) » FJt ¥ iy £ F1 2 L0 BT EH 07 g = LED %% > & faes 34
ZREIHFESG F RhE

AETHEEZP AR R R ERHFEL TEFLF BEFLE > ¥ Nguyenetal. (2017 2019) H 2
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#d LEDHZ RPHE 47 LHFFLLE-Re AFF A BPRFTEFE %
“fﬁ‘”ﬂ’fﬂ-ﬂffa B EfA L %A RS ETERERES TS REFEDRS
BT REFALAR EBPABRTFIEY IS A BIERRE O FEDR I BIORTTEG R
AR X FRFY DR FTEFTELYBLF EF AR 2B EARRE T S K

B gk (Hisametal.,2020) » @ ;R R8s 6 5 2 % 5 5 73131 % > 5@ v d0dRR@|m &
BA SR FRCHRIAE I FHRDTERE D A A FEDL BAS T R R R i
f* - Naimullah et al (2020)érF § 47 2 & ## 3 FECF T S Fu by o 23 43 @
(Psanguinolentus) /% i foie & = 40 83 45 b8(C. feriatus) friki» &+ (P pelagicus) 4 4
A 3 LR EA T 7 R EDEEY 2k K3 P sanguinolentus) b Yg I 5 R F] o

O
s i

3;4

e
* e
N

=
‘%

E;
=
?“f;“_

wﬁpzﬁﬁnwﬁ5ﬁ%%*%ﬁr%fr&f2$ufﬁﬂ%ﬁ%ﬂﬂ*%*&“ﬁ%

F
foj S RNEENE TGS E AL BT RASEA B ARy (LT LR RE S
FEZ - FPRRATETOEE AP P R ERE R PFHERE O ESRT AR F oK

e gt =x L_f‘_/?&’/vg/‘*fé:‘i@f:’ff‘ PR %?H‘k é /éf' %#E %i_%i li’—%" 4 méﬂ‘} _é g?ﬁt/‘* "\L{L’ rﬂ
PLRPIERE AR I PHEREY >V UREP RS WAL 0§ RN A g

N

E S RIRG RGBT AR o
VR RBRIED R R E RS TR P skl R EEMT At [ 23
B L Hrk S HRB PN E GAVE > NP R B FE R T F R LR LY o

(2) 2 FRRHEERIFREE

AR A PHE D PR RIRT LRI R SRR FE AR s Y R

R T Sy f A g R R - B3 T ORI IR §F T) AR EA B IR R B
Rk Bk E My VgAY B A S A AH 2 T 20%: KFTE B LR A

MR FERSEVRER R e g o A B FHD T 70% 0 Bom ih AR
AR LR Y RREF R B o B R AR RE K SRR et R S S

VT L s ?%-XE,%?;E’%YQJ}L%E £ (XO -SGcomplex ) 2585 & F 2. FA# > ¥ 57 7 7 B2

N

FeRBREEPHI M5 7 Z e RS APFREFRSF T Y7 LRRRIE w2 BN
(microstructural rings ) > /&2 B ¥ B o F b F AP LR o TR 3 ﬁ%ﬁ“ bl & B

(57.86% ) ‘=% =2 (49.89%)> &k B X (954% ) 5 kT 2 FA L LAFE LT #
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Lah e e SR R G F LD SR L FE 2 k> Bk pRATAHTR
KPR TR ARk B % B i ?e (retinular cells) © 4RF ¢ % e jz*% (absorption peak) 4 # 3 B o
WA A A S HGRERE T B HER R R (FH A ER R LY 450-490nm) B § #F e
BEZEHAERRY FARFTEFRKESF M (Cronin & Jinks, 2001 ) o F]pt > FR 7 i §] A&
¢ FiEib e T R 0 ERELEY BRI e e S0 B e o
R EREFR VSRS R Bt DR R L - R T e IR
v kA ERE (5 620-750 nm) > p’x% & 24 e (photothermal effect) st
Sldzimie RN BHE M G Mo AR T o %R (AL K 520-560nm) $i- b ¥ @Rk s Rkl
Foar FIEARE S A jirn R BRAEAN G AAFECREREG L RS ELGHE R
(Chionoecetes opilio) * H s - &_p 7 BFehF g AR @ dp N ER B R BR I F R T REF &
227 5 %1 (Nguyenetal., 2017 ; Wang et al., 2022) o
Gt KT R R T R AR ik BT T et R ATIR R 0 T
FRAFARAE LN RGER X ZR 2t 2% BF T ERERF BT L EZN G2
A s TN N E P 4o LED R EERHA TS ORES T AR FRR-HRE
# % & i (immunohistochemistry ) & J 32 (insitu hybridization ) $i#¥ » & T 8 T g % v (4r

opsins ) 24 A SR A {0 M- BAINIE N FhoT R £ T BUEARE B A SR A0k BLend 3 OIE R 4o

() #+ @pefi|s e

DNA /% + 3% (molecular genetic marker) & - f&7 {end frihis 2 X PFRF ~ 2 B (¢ 3
EHEET) SRAFIZEF L AAFed Bk THRRSES FEIE FRR L

RPHIFAFAGET Y P AET BB IR (RBR) A AR RFIR T
= (QTLmapping ~ GWAS )~ 2 F e+ T A 2 PR BB R EREI T Ra & - FRETR
JE* DNA & F i » 3 FAZ 2 R s 3T RES S 28 - @R4LFI 10 7]
PO AR A P A - AR T AR LIRS T Y kA RS (Amiteye, 2021;
Pedroza Matute & Iyavoo, 2025 ).  p 2006 & =x £ i T_J& 3 j#F ( next-generation sequencing, NGS )

ek 2RAF R PRSP HR S A A7 R 1T iE 2 B ok o NGS e~ tg's i< B

BRSSP AL F R AL S P B ES S RRTRE ) T A
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DNA A 7 ¢ 532 7l e 5 Al T3 o 5@ 7 NGS Hae8 0 i * 525 bz~ @
SHREA CBARFEFEEE S AFRTE s AFHET AL REREAS

S PR S Al o B PR S ik (single nucleotide polymorphism, SNP) & 3 P & ik

S g A AFIMEA > FHIRHG L RIZRF R 5 (2) 5] (/1) R EwEE
B 3) FHRNMER @) BREYE > ES BT T AT F % HSNP =8 (5) F
EIPHEEIIRLPHEITT SEFRPIERY S0 R FRMHEHIRPFALFAATLER
(Muzzeyetal.,2015) o &> F i ig$ > A7 78 2 F e SNP A 4772 2 > L8~ 5 &k a

’I RipAFd LareFRARFF iR+ B 43 i N2 ka8 faod @ 5 &
BoERFIEFRYARE - FRAZF OGBS ME o BE AL ERE RS B
(Portunidae ) 2 t%~s SNP & F #3&iF 8 » M kA KPP BERE EH B I 7 HAH > &
LR $10) B3I &= - F1 8 2 Wz p T

AFLHEY MBESF 2AF TR R0 A @SN B (Portunidae) + fachd &1
SNP 4 & o Illumina ' > £ & 115 1.69 x 10°=x 2 A ¥ £ > S &F T (Q30) i % F 96.2%
57 B R TR ST A4 o 2 k¥ F B (Portunus trituberculatus ) ¥ G 5% A FlEiis
re-mapping $ » &% ¥+ & (P pelagicus) ¥ = & ¥+ {# (P sanguinolentus ) ik %l % ¥ F &
Bl 5 78.02%¥2 54.22% 0 @ dhsaiE (Charybdis feriatus) 22 % 7% (C. natator) P % 28.29%%2

33.46% - st R G E A S E AR 1WA F B 2T ATk B S B (Portunus ) > # k 1F <0

W

FBrldp iuts s (55 & RURIERE (Charybdis) B A R - ROV HFRE - GF RES
AErAFER s e F AT N REFE 30%  FE o 41 iE TR B 4 3 SNP 3k
B g3 o 47 (Heetal ,2024) c 237 7 B ¥ &35 1) 135,593 B B & F SNP =8k > & # 3% 49 %
Mo T FTHEF AEAPIET A F RS %Qﬁ;.&iﬁ@..%f#/}ﬁo BERTEE MG
ARG AT LA A A4 (PCA) F 3 2 B enfl @84 A48 % 7 » - &% - 1 34 (PCL
2 PC2) % jafR47iE 75% % B £ (PC1 5 56% ~ PC2 5 20%) » it F »ayf #OFH 1L & enid B
PoRALTERERZ EEH > FEALZBHE LA R I PR AR I B 200K

FEE 3 ATIRE L AR BN ARSI
AL 44 P pelagicus <% 3 #F‘ HEE2l3 38 @ ke r@rit 28 5 *U(Klinbunga

et al, 2010) > @ iT &4 * GBS & SNP A 455 4 BT F 4 12 %3 A b hif R §
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(Heetal,,2024)c pt ot > Ay o BB R E ¥ A F > 2 &7 - 94T §7 (Hardy—
Weinberg equilibrium ) » i&— # P FALchi @ 632 » g * 2% ¥ g BAp b~ 45 o 12 135,593
B SNP FlEfan i W TR T B PRERBETFERLS A AR LR A
BB A A B A TR D A fE a4 o %% % Dangetal. (2019) ¥
K3 & P pelagicus ¥ 3 - R PRI RERFRE- R Livg ABLDEHELS T -
Bk Heetal (2024) 1% GBS $uites 17 4hsai® (C. feriata) %% > “#REEF T5d @ 5
Bt~ IEHA L b AT § AoniRer ki ki -

AT aE AP SNP HRih ks B T R NS BER SRR GRS T 0 RS 1T
AETRY W AT & 18 B4 H T BRGE T 5 # 7 @A S 3k 4o COIRAPD
& AFLP (Klinbunga et al., 2007 ) > @ *FF 7 & * ~ LHSNP FAd o i { #F fmdhom 23 A L &2 A
Flin ibe f o Heetal. (2024 )4 &) > dhpri® i ¥ WA = 003 5 5 8 A& Flin g 14 1 # i Klinbunga
etal. (2010) B ’fIRiJ*»Bi]Ppelaglcus HFEG AU A T (Nem<1)e 237 S 5% F KT
hEsARRAS (-8 ko & ‘ij.\l?&]) Popapr B - REF ARSI P BT RN
BBHEFRLEFURFFERLG R BRFRTARGE - & EREE P AP
BRGANY BEE 2 R EPE c AR EFR B AR AT B FL SR TR (PR kg B3
R ) B EBERTERE T TR BT LIF~ dhr AT BRI e 287 7 22 2 0 SNP

FALRE T 0% 5k A &k (traceability ) $ERAFTRAFHr nE L F DT R o
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L3R FREREER

FE P il @R PLRENE ARSI RTHREREEL DR A %Y ¢ o R
FRFEZE TR P EL A RUE R AL TE RS FELREFEAMCE T RS S
Fars S5 E 90 A2 F36 A il B EERG o

AT 2024 #8873 202587 ABP e sBeF i Xl RBE LR TR
7Tk R b (S1~S3~S5) #HgA B2 FEM A ssck -8 FAR KL L MIE
CRIERBEFER T B R A SR BB 660 BH LY T 4Bl o BT R E R
Tl LR P HM T 60 B AE Oem 2] ] B o HERS 9 P B2 2025 F 7 P i 8
SR BFRERR BEHAHB RO KT 10.1om> S1 83585 A G 9.8cm 9.9
cm ¥ 92cme A RFESF Z A FIFELAE B HERFIE] N 9om 2 Bl AHRES
3.4%S1 2 1.6% > S3 £ S5 &% 5 0% ; & 4% ] 3 9cm ¢ BB i A 5 82.5% ~ 73.3% ~ 58.1%
27 588%  BEom TR FAR C AEE TR 2B T BT EHB AR MR R A
Hde o P ek A ABF (R 283com Sl 289em-~S329.0cm~S5%293cm)- k¥
G T EmEd 128 cm D 142 cm o LAEd 79 em 2 T 8.7 cme SFF Arit o W TR
W T F k@ h L A BA N P HRETRAE SRS RS EREE G D6k &
TAE T O R SRR e R IR R R R L S 25% 00 1 ] A
o 3 b T RS AR T L PUE L A B g R

R4 KRR L BRI RER YT SR PR TS RHF R B
AEFE (P>0.05) wkimehif BE v Mg dlio e 2B R BT - 2 F LA B B
iéﬁ?#ﬁ“ééﬁﬁ:%%ﬁ%“ﬁ ot & E A i otk s M RO RETIHFALRL cREHE AT R

B R P E AR R KR L R R EFEFY AP K REYT T
BHES OMEEFZ -

TR MRl M AR A et a3 nFs > AT 3R 1 LED Bk
CEEER S PTHEE AR F R IR S FETREH IR AR R RT KR XD
ABMLF bdF DR A F kY FAR PN T RIS SERERFRG HRRAFZFL N
ERFEEALT R G- AP 0 PR GAAHRETTAT] W R 2022 £ 7 F
FAR®RS AFERFHKY 2 15 LR FRELEOPERA > p EXRSAD A&
kG ke o Wipgh- Bep{®, T RE e 12023 B30 F - R AR L2087 4 EARK

—,h

EE o REHARKEY L NG AE S 16% S 5 84% FREd 7 5 17% F

FEET9% ke 8 LB HTF 5 0% "i7F 5 100% 5 2024 & F F 3 p e 7
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o9 FEREGFFET% A FE B% o mkeFiTF 5 33% B EFE 67% 10 ¥ Fk
BHEFE 8% MEFFE N% BREHITFE 8% EFAIF G 92% - 55E 2022 1 2024 £ ¥
WA BREEF 4P WL 1636% 0 FTH L 83.63%; EReE G S P % W
FF 5 1791% M7 F 5 8209% ; ket 1 X% S LERBMY 837 HFF5E 0% 8
FEI00% "5+ 3T AR RREE - TFTEaBFLR P25 2 FRRER
T oL A AR A AR AL R A0 ke ek Ol - LW ARG A
kP AFRGEF MR RN PR A BRI RDAFEST AR FTEHFLE
AFPEFZFPTAR S AR, TR FHRFR P AHEE RN AR TR PR A RERHRS T T
PR RO RSB LR B REEFY KO v HE R E L) RBRBETHREE N T Ak
€FHBBRATP R FRRT A H R ABRP I E PR s T AR A RIS R B
B RFEREFITR ARRRERFFIH S HR e - TR DR AkE > 12 BT
SR FE A LR T3 &R R R IR P AT AT %sﬁﬁ?%‘\»ﬁ‘w 3 gl o
IR o8 v SRR R R R | T AR g_’.wéif%go;;;? ERZ Y Ak
FERBEEFEHRR T BHI P RRDPRRE I K I ¢ 2 TfRH PRIk RuE
2 AR REFEAT A ZERMPTEE IR i'?éﬁiﬂ-i#%ﬁifi«:b‘g o

AT A R AL RS PR B TR E 2 F 2 # 5L BR e R
R HERAR Py B R A HFRARET D ERY] s BHER KR HTEY
PEAB - FRBESTIENRIFE T BRAFG I ARG B R RN R s B
BBk BR300 BHMEREE LA NBSEL SRy o LR 30 A4 B
{6 = B4k 7 10 Davidson T FR AL 0 1 IRF PRIk e ,f’:“—';-f?_ o

LRREL T BMNRIE P A S NE A B AT E S R L e S
(Universiti Malaysia Terengganu ) & % » 4% ¥ S F T AP W@INRIE(TICL o iR §
FHEFBAF S A B EPRIE P A M S RAG20%8FRDL D T0% e E g 35 1(1) 3
AL (15 SIS AR RS R (2) MAEARY 4 T0% FRAT T ALE SRR %
B (3)w e mpEfiep wg 2o I HERAmEE o IS B Ao ptrh o 2 BRI S 1Y
BB D 2@ S0um BAGE S 14 B e Sym 2 B LB 50 um i F e 29 B s s
5um*7 % (4c Figure 42 ~ 43 #557 ) o

PHBRZE L L 1THT kR BF (2 10um) ™ @ 2 2 &y ¥ LR KRR
o e % LA ‘*T#‘é\: s Al EL BTk S 57.86% ok 49.89%: &k w1 9.54%:
LEVRMTEREE kT BE AR REKF 4832 B ABL kB A%k 4035

BH A~ 8 (Figured44)  HFRARF E IR EX =~ 2k » %k > Brali FLEL L kv
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AE PR ORIF PRI e BRI @ kT B35 o

et

FHREEHT O LER T PRBAHT XL FEB IR RS BRA TR EERLAEY FXT
BHERE AL FCEHRERAE T B BRI T iR R R e B R R
% o %R F it BT B H PEREARL AT Lo A S kR dhT 7 R E kR

B BT e S B T2 - BN BRBER S S F o P s 7

%4

HRErTEREXEBETET “’T'Jr; £ 48 (XO-SGceomplex ) i= ¥ B4 j& N o a0 pL P jireiud
SHEFALAED Y A2 kR XAFLA RS TEFAY gﬁigﬂdgé@
AR T+ 4L (Portunidae ) A $+Mﬁﬁﬁiﬁ®§ﬁﬁﬁﬁﬁ$ﬁnj?iﬁwﬁ

‘gﬁa

PiH A& ¥ ik 42 (single nucleotide polymorphism, SNP ) 4 + Rtk 8 » 1 iv 3 fagH| & id £ g 32
2R BE Ry AL HR AL RF kF T2 %&@]‘}’é‘}@ 3% a3 & ( Portunus
pelagicus ) ~ ‘= & ¥+ @ (P.sanguinolentus ) ~ = 7% ¥ + @& (P, trituberculatus ) ~ #:513% ( Charybdis
feriatus )22 % A ¥&( C. natator )o F 3 % MR E F > A Fle 2 A { vk (low-coverage whole-genome
sequencing, IcWGS ) » £ & 115 1.69 x 10°X B 7| # B » & &% F;-‘r"!;'* 12 (Q30) 8 %F FiE 96.2% >
Bom TSR L4z ki BT L 54 A TR (T re-mapping 16 EHFBAFIEREFF 40
28%3 T8%2 B 0 & A 1 AT TR o B 6E N 135,593 B F 57 SNP gk o A
49 4 ¢ 1 oo

AA A A4 (PCA) BSAA - B- 85 4 202 2B T5% A BB 8 FEFAZ
BEH I RARIPE R I EE b B N BB LR HE o L AF T AT
Br R PREdgvpmes i s o apdB- REFaFAFL P B3
K+ PRy AT AT ER IR RpEA i BEalshB RE Rl g R oA Tl o

AP AHEZRF ERPe SNP 2 F ikl > S AP SRR RSB EE Y 0 K
KPR * kA SRR SFEE BT RAET AT PR AR5 2 B85 T K EPEE
T SLMWASY Rl 2T hiTREL L pPE Ry -
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